
International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

A QoS Based Web Service Selection
Through Delegation

 G. Vadivelou, E. IIavarasan, R. Manoharan, P. Praveen

Abstract- Service selection is essential for fulfilling the requirements of service requestors. In the service oriented environment,
Quality of Services (QoS) is one of the utmost concerns for consumers during service selection. Existing web service standards do
not undertake the QoS issue efficiently and the load balancing is not performed to the maximum degree. In this paper we propose a
new architecture called the Delegation Web Service (DWS) for selecting the web service more efficiently and with maximum load
balancing. The load balancing is achieved by grouping the web services of similar type from the registry by the DWS for each
consumer’s request and it is predestinated to each monitored web service. The monitoring of QoS parameters such as response
time, efficiency, round trip time are done using the Web Service Distributed Management (WSDM) standard, since it has the better
method and specifications.

Index Terms: Delegation Web Service, load balancing, Quality of Services, response time, Service selection, Service oriented
architecture, WSDM

—————————— ——————————

1. INTRODUCTION

 Web service is a programmable Web
application that is universally accessible

through standard Internet protocols [1], such as
Simple Object Access Protocol (SOAP). Web
service technology is becoming more and more
popular in many practical application domains,
such as electronic commerce, flow management,
application integration, etc. It presents a promising
solution for solving platform interoperability
problems encountered by the application system
integrators.

With the ever increasing number of functional
similar web services being made available on the
Internet, how to distinguish the best Web service
from others becomes an urgent problem to be
solved. Web Service Selection is a key component
in service-oriented architecture [2].

————————————————

First Author- Research Scholar in Computer
Science and Engineering, Bharathiyar University
Coimbatore, India.

Co-Authors- Department of Computer Science &
Engineering, Pondicherry Engineering College,
Pondicherry, India.

The selection of web service is usually based on the
functional requirements of the consumer but those
web services may not able to provide the quality
the consumer expects.

Consumer requirements may include not only
functional aspects of very depends on the ability to
describe and to match QoS offers and demands, in
addition to functional capabilities [3], [4], [5],
[6].The web services has to provide a good quality
of service to the consumer. The Web Service
Selection based on QoS parameters become the
challenging task in current trend. Quality of
Service is an aggregated metric for describing
characteristics of systems in areas, such as
networks and distributed systems. According to
Liu Sha [7], QoS based web service selection
mechanisms plays an essential role in service-
oriented architectures, because most of the
applications want to use services that accurately
meet their requirements.

To overcome the above mentioned drawbacks of
previous works, a new approach has been
proposed which offers a better solution for
implementing web service load balancing. It also
reduces the complexity of the work in selecting a
particular web service and provide less
components compared to the previous selector
approaches. In this proposed work, each similar
type of web service has one Delegation Web
Service and it is predestinated thereby we can

A

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

solve the problem of load balancing. It also
simplifies the architecture as well as the Delegation
Web Service’s interface. Moreover in this paper the
manageability of resources can be performed
efficiently. The standard called WSDM has been
provided for the resource monitoring. WSDM
includes Management using Web Services
(MUWS) and Management of Web Services
(MOWS). The MUWS and MOWS of the WSDM
standards are used to monitor the QoS of each of
those similar web services consumed by the
Delegation Web Service. The availability of the
web service has been checked by using Web
Service Ping operation which is called as a
diagnostic tool. With help of these standards the
accuracy of the web service can be maintained
greatly.

The remainder of this paper is outlined as follows:
In section 2 we briefly present the framework to
monitor the QoS parameters and also the
processing states of the request , in Section 3 we
present the related researches, in Section 4 we
describe the Delegation Web Service (DWS)
architecture’s concepts and the selection process
steps, in Section 5 the selection algorithm based on
strategy pattern is discussed, in section 6 the
process to balance the load is discussed, in
section 7 the implementation and its results is
discussed and Section 8 concludes the paper and
presents the future work.

2. BACKGROUND

2.1 WSDM Framework

2.1.1 Framework Description

 The WSDM standard specifies how the
manageability of a resource is made available to
manageability consumers via web services.
Endpoints that support access to manageable
resources are called manageability endpoints. The
implementation behind manageability endpoints
must be capable of retrieving and manipulating the
information related to a manageable resource.

The focus of the WSDM architecture is the
manageable resource. The manageable resource
must be represented as a Web service. In other

words, management information regarding the
resource must be accessible through a web service
endpoint. To provide access to a resource, this
endpoint must be able to be referenced by an
endpoint-reference (EPR). The EPR provides the
target location to which a manageability consumer
directs messages. The manageable resource may
also direct notifications of significant events to a
manageability consumer, provided the consumer
has subscribed to receive notifications. Thus,
WSDM covers three modes of interaction between
a manageable resource and a manageability
consumer. These modes of interaction are as
follows:

A manageability consumer can retrieve
management information about the
manageable resource. For example, the
consumer can retrieve the current
operating status of the manageable
resource or the current state of the process
running on the manageable resource.

A manageability consumer may affect the
state of some manageable resource by
changing its management information.

A manageable resource may inform, or
notify, a manageability consumer of a
significant event. This mode of interaction
requires the manageability consumer to
subscribe to receive events on a desired
topic.

Fig. 1: WSDM Framework

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

2.2 WSDM SPECIFICATIONS

WSDM consists of two specifications:
Management of Web Service (MOWS) and
Management using Web Service (MUWS).

WSDM-MUWS

MUWS enables management of distributed
information technology (IT) resources using Web
services. Many distributed IT resources use
different management interfaces. By leveraging
Web service technology, MUWS enables easier and
more efficient management of IT resources. This is
accomplished by providing a flexible, common
framework for manageability interfaces that
leverage key features of web services protocols.
Universal management and interoperability across
the many and various types of distributed IT
resources can be achieved using MUWS.

The types of management capabilities exposed by
MUWS are the management capabilities generally
expected in systems that manage distributed IT
resources. Examples of manageability functions
that can be performed via MUWS include:

monitoring the quality of a service

enforcing a service level agreement

controlling a task

managing a resource lifecycle

WSDM-MOWS

MOWS provide mechanisms and methodologies
that enable manageable web services applications
to interoperate across enterprise and
organizational boundaries. It is used to publish
Web Service’s QoS parameters. WSDM's
Management of Web Services specification extends
MUWS to define how to specifically manage a
resource that is a web service. Web services, like
other resources, have identity, metrics,
configuration, and other capabilities to enable
management. For web services the compose-
ability characteristic is especially interesting
because it allows the business function of a service

and the management function for a service to be
composed together into a single service.

2.3 REQUEST PROCESSING STATES

A web service endpoint accepts and processes
messages targeted at it requests. Every request
goes through a number of states (e.g. received,
processing, completed or failed) as defined by the
[WSLC] and extended here.

Fig. 2: Request processing states

Following is a list of elements corresponding to the
top-level states of the request processing state
model (Fig 2).

Request Received State

This element corresponds to the Received top-level
state which means that the web service endpoint
has accepted a request to perform one of the
service's functional responsibilities. This state
represents the earliest point at which the
manageability provider knows that the request
was dispatched to the web service endpoint being
managed.

Request Processing State

This element corresponds to the Processing top-
level state which means that the web service
endpoint is doing some internal
processing/execution to fulfill the requested
function. This state represents the earliest point at
which the application module or business logic
begins processing the request. For example, if the
application server queues the request before
dispatching it to the business logic, the time
difference between “request received” and
“processing” will include the duration the request
was queued.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Request Completed State

This element corresponds to the Completed top-
level state which means that the web service
endpoint successfully completed requested
function returning results to the requester.

Request Failed State

This element corresponds to the failed top-level
state which means that the web service endpoint
encountered an error and didn't complete the
requested function, returning error/fault to the
requester.

The RequestProcessingStateType XML Schema
type is declared as follows.

An instance of the request processing state
information represented in XML may appear as
shown in the following example

3. RELATED WORKS

According to Liu Sha [7], the Web service
selection is usually driven only by functional
requirements, which can’t guarantee the real-time
validity of the web services selected. So he
proposed a QoS based Web Services Selection
Model (WSSM-Q) to provide QoS support for
service publishing and selection. In the model, the
QoS of web services is managed, including
defining the QoS model, collecting the QoS
information, computing and maintaining the QoS
data. Upon the QoS management, the web services

that match the requirements of consumers are
ranked for selection according to the overall QoS
utility. In [8], Web service architecture employs an
extended UDDI registry to support service
selection based on QoS, but only the certification
approach is used to verify QoS and no information
is provided about the QoS specification.

According to Diego Zuquim Guimarães Garcia and
Maria Beatriz Felgar de Toledo [9], an extended
web service architecture can be used to support
QoS management. In this approach, QoS
information derived from policies based on WS-
Policy is encapsulated inside QoS Policy structures
stored in UDDI registries. Each element of a QoS
Policy structure can be associated with a Technical
Model (tModel) structure, which allows
specification, standardization and reuse of QoS-
related concepts. Furthermore, the extension
allows the use of brokers to facilitate service
selection according to functional and non-
functional requirements, and monitors to verify
QoS attributes. According to S.Ran [10], a
component called certifier and a new extension of
UDDI is modeled. The certifier’s role is to verify
service provider’s QoS claims and the new UDDI
registry is a repository of registered web services
with lookup facilities. The new registry differs
from the current UDDI model by having
information about the functional description of the
web service as well as its associated quality of
service registered in the repository. Lookup could
be made by functional description of the desired
web service, with the required quality of service
attributes as lookup constraints. The new role in
this model is the Web service QoS certifier that
does not exist in the original UDDI model. The
certifier verifies the claims of quality of service for
a web service before its registration.

 Y.Lee [11] introduces WSQMS (Web Service
quality Management System) to measure QoS of
web services. It further introduces WSQDL (Web
Service Quality Description Language). It
advocates the use of the QoS enhanced UDDI for
web service selection. Tao Yu et al. [12] design the
service selection algorithms to meet the end-to-end
QoS constraints. Their works are not focused on
the trustworthiness of QoS criteria of a service.
Although the global quality constraints can be

<xs:complexType
name=”RequestProcessingStateType”>
<xs:complexContent>
<xs:extension base=”muws:StateType”/>
</xs:complexContent>
</xs:complexType>

<my:RequestProcessingStateInformationElement
xsi:type=”mows:RequestProcessingStateType”>
<my-soap:SerializationState>
<mows:RequestProcessingState/>
</my-soap:SerializationState>
</my:RequestProcessingStateInformationElement

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

satisfied, service selection may not be locally
optimized. Therefore, good component service
often fails to exert its potential and embody its
personality. The work was proposed in the
reference [13], which presented a model of
reputation-enhanced QoS-based web service
discovery that combines an augmented UDDI
registry to publish the QoS information and a
reputation manager to assign reputation scores to
services. However, it only described abstract
service matchmaking, ranking and selection
algorithm. The references [14], [15] introduces WS
QoS (Web Service QoS), a framework for QoS
based selection and monitoring of web services. It
advocates the use of a Web Service Broker for QoS
based web service selection. Frameworks to
support QoS verification with the goal of
guarantying quality levels are described in [16],
[17], [18].

The works discussed above may have certain
limitations and involves complexity in monitoring
the QoS parameters efficiently and also the load
balancing may not be provided to maximum
degree. So a new approach has been proposed to
overcome the limitations of the existing works.

4. DELEGATION WEB SERVICE
ACHITECTURE

4.1 Concept

The new approach that is the Delegation Web
Service as selector architecture is predestinated to
implement web service load balancing. In this
approach a Delegation Web Service for each web
service type is made, as this simplifies the
architecture as well as the Delegation Web
Service’s interface. However, one Delegation Web
Service can also be used for multiple web service
types. The Delegation Web Service does not
implement any functional parts. It delegates the
functional request to corresponding web services.
This DWS is used to perform the load balancing
factor in an efficient way by grouping all the
similar web services requested by the consumer
into its register module and there by assigning the
priority value to all the grouped web services and
it will use the particular web service with the
highest priority value. In case if that particular

service gets overloaded then immediately it will
use the next service in the prioritized order from
the register module of DWS. Moreover it will
consume functional as well as non-functional parts
from the used web services. Non-functional parts
will include MOWS and web service Ping, as well
as MUWS from multiple MUWS web services. The
Delegation Web Service will then decide which
web service it delegates to. The decision is based
on the consumer’s functional requirements and the
non-functional requirement that is the QoS
preferences.

Fig. 3: Proposed Architecture

4.2 Selection Process Steps

Following are the steps to select the best Web
Service using the Delegation Web Service:

(1) In step 1 the consumer requests the
Delegation Web Service (DWS) for the best
web service by giving the functional
requirements along with the QoS
preference.

(2) In step 2 the DWS look for similar web
services according to the functional
requirements of the consumer from the
UDDI registry.

(3) In step 3 the DWS send the request to
publish the QoS parameters of each web
services.

(4) In step 4 the web services publish their
QoS parameters to DWS.

(5) In step 5 DWS request the WSDM to
monitor the QoS parameters of the
consumer’s preference of each web
services by using the selection algorithm
which is described below.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 6
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

(6) In step 6 the WSDM response with the
QoS metrics value and report the best Web
Service.

(7) In step 7 the request will be sent to the
best web service that has been reported by
the WSDM and that particular Web
Service will then respond to the DWS.

(8) In step 8 the best web service meeting the
requirement and the QoS preference will
be sent to the consumer.

5. SELECTION ALGORITHM

The above algorithm is based on the strategy
pattern to select the best Web Service by
monitoring the QoS parameters specified by the
user. The strategy pattern based selection
algorithm yields easy to implement algorithms and
to use multiple diverse selection algorithms. The
decision context of the algorithm is to return the
best web service to the Delegation Web Service. At
first it checks for the service identification to see
that particular service belongs to the service list if
not it will added to the service list. Then the end
point reference will be assigned to it and also the
corresponding MUWS address to which it should
get monitored.

After that get the QoS parameters to be monitored
for all the similar web services which have been
sent by the Delegation Web Service and those
corresponding parameters will be then monitored.
Then the result of the monitored parameters of all
the web services in the list will be compared and
the decision will be made to select the best web
service. After the decision the result will be sent to
the decision context and then it will be responded
to the Delegation Web Service. Multiple algorithms
can be defined for the same QoS parameter
depending on the constraints.

6. MANAGEMENT OF BALANCING THE
LOAD

In the proposed work the load balancing factor is
concerned greatly. For every consumer request the
DWS look into the registry and group all the
similar web services meeting the functional
requirements. In this approach for each type of
web services a Delegation Web Service is provided
and also it is predestinated in sending the request
to the web services to implement web service load
balancing to maximum. Each web service will be
provided with some threshold value and by
reaching above the value will make the service to
get overloaded. Since for each type a DWS is
provided it is easy to balance the load when it gets
overloaded by making the next subsequent
monitored web service to be available.

From the consumer the functional requirement
needed will be requested to DWS along with the
QoS preferences. Then the DWS identifies the type
of service based on the functional requirement

Input: Web Services (WI, WI+1…………Wn) with QoS constraints

Output: Best performing Web Service Wk satisfying QoS constraints

Begin

DecisionContext Best Web Service

//check for service identification

If Wi ! SL<Service List>

AddService(Wi) to SL // adding service to the service list SL

Assign Wi = {EPR, IP, EPRMUWS} // assigning endpoint reference, IP
and the MUWS EPR to the added Web Service

While (ServiceList != empty) do

ServcieList null throw

List is Empty Else

getstrategy(QoS) //Getting the QoS parameter to be monitored with the
constraint

DecisionStrategy(QoS for all Wk (SL)) // QoS monitoring of the Web
Services in the list

Compare (Result (QoS (Wk (SL)))) // To compare all the web services
result of the QoS from the list

Select (Wk(SL)) // Selecting the best Web Service

Return Best WebService(Wk) // returning the best web services
satisfying the QoS constraints

End

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 7
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

requested by the consumer and will look into the
registry by specifying the name of the service. The
Find module of the UDDI registry will display all
the services of the similar type. The DWS will then
group all the similar web services into its registry
module. Then each of these similar types of web
services will be monitored and assigned the
priority value so that the DWS will be able to
predestinate the request of the consumer’s to the
web service. This mechanism provides the
maximum degree of load balancing compared to
the other approaches.

7. IMPLEMENTATION AND
EXPERIEMENTS

The proposed system is implemented using the
Eclipse IDE and Apache Tomcat server as the
service deploying platform. Apache Muse a java
based implementation is used to implement the
WSDM standards. In the Apache Muse framework
first create a WSDL specifying the Delegation Web
Service interface and then create
DelegationAsSelectorResource.rmd. Secondly add
the Operation getBestWS, for returning the
Address of the web service with the best QoS. The
DelegationAsSelector.wsdl needs to contain all
functional operations, of the web service it
delegates to. The code is then imported to the
Eclipse and then being tested with the TestServlet
to be run on the server as shown in the Fig 4.

Fig. 4: Testing of the services using the Test Servlet

Then the result of the best web service for different
QoS parameters in the service list based on the

proposed selection algorithm will be displayed as
shown in the Fig. 5

Fig. 5: Result of the Best Web Service in the Service
List

For inquiry and publishing of the service UDDI
browser and jUDDI registry is used. The jUDDI is
the java implementation of the UDDI registry. The
module publishes the service in the UDDI registry
with the WSDL file and extracts the QoS
information of the service. The service can be
published and inquired by specifying the URL into
the registry information module as shown in the
Fig. 6

Fig. 6: The info window for publish/inquiry of
service

After the service has been published it can be
inquired at any time for the functional
implementation of the service. The customer
queries the Find module for services with
functional and QoS requirements. The Delegation
Web Service gets functional matched services from
the registry and then requests those web services
for the QoS attributes of each Web services and
then it will be monitored by the WSDM
framework. The Find module of the registry
provides the search with three options as shown in
the Fig. 7

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 8
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Fig. 7: The Find window to search any published
services

The previous work [7] is taken for experiment and
compared with the proposed work. Both the works
have been experimented in their own form of
selection process. Then the experimental result of
both the works is calculated by evaluating the
parameters such as responsiveness of the web
service selection per request and efficiency. These
parameters are defined as follows:

Efficiency: Refers to the overall quality of the
service selection and the load balancing factor.

Responsiveness: Defines the time taken to
response for each consumer’s request/ second

 The comparison graph of efficiency for the
proposed architecture and the previous work [7] is
shown below (Fig. 8) in which for example the
consumer 1 gets the efficiency of 94.5 percent with
the proposed work whereas the same consumer
gets the efficiency with 92.54 percent. The Fig. 9
shows the responsiveness of the web service
selection by the selector to the consumer’s request.

Fig. 8: Efficiency of the web service using proposed
and previous techniques

Fig. 9: Responsiveness of web service selection to
customer’s request

8. CONCLUSION

Web Service Selection based on QoS value is an
important research area. The selection of web
service are usually based on the functional
requirements of the consumer but those web
services are not able to provide the accuracy in
their services The decision should always be based
on QoS parameters important to the specific
consumer. The proposed Delegation Web Service
as selector architecture hides the web services and
also it is predestinated to implement web service
load balancing. For each type of Web Services a
Delegation Web Service is provided for better load
balancing. The QoS monitoring is done efficiently
by using the WSDM and the best web service is
selected based on the selection algorithm being
proposed. Future and upcoming work is to include
more QoS parameters to get monitored by the
WSDM and to have one Delegation Web Services
for multiple web services types.

9. REFERENCES

[1] Ryman, “Simple object access protocol (SOAP)
and Web services”, Proceedings of the 23rd
International Conference on Software Engineering
(ICSE 2001), Toronto, Ontario, Canada, pp. 689,
2001.

[2] Berbner, T. Grollius and N. Rep, “An approach
for the Management of Service oriented
Architecture (SoA) based Application Systems”, in
Proceedings of the Enterprise Modelling and
Information Systems Architectures, Oct.2005.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
“WebServices: Concepts, Architectures and
Applications”, Springer, 2004.

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 9
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

[4] M. P. Papazoglou and D. Georgakopoulos.
“Service oriented computing” - guest editorial.
Communications of theACM, 46(10):24–28, 2003.

[5] H. Ludwig, “Web services QoS: external SLAs and
internal policies or: how do we deliver what we
promise?”, In Proc. of the Int’l Conf. on Web
Information Systems Engineering Workshops, pages
115–120. Springer, 2004.

[6] E. Lee, W. Jung, W. Lee, Y. Park, B. Lee, H. Kim,
and C. Wu, “A framework to support QoS-aware
usage of Web services”, In Proc. of the Int’l Conf. on
Web Eng., pages 318–327.Springer, 2005..

[7] Liu Sha, Guo Shaozhong, Chen Xin and Lan
Mingjing, “A QoS based Web Service Selection
Model”, in Proceedings of the IEEE International
Forum on Information Technology and Applications,
pp.353-356, 2009.

[8] M. A. Serhani, R. Dssouli, A. Hafid and H.
Sahraoui, “A QoS broker based architecture for
Efficient web services selection”, in Proceedings of
the IEEE International Conference on Web Services
ICWS, Proceedings, pp. 113-120,2005.

[9] Diego Zuquim Guimarães Garcia and Maria
Beatriz Felgar de Toledo, “A Web Service
Architecture Providing QoS Management”, in
Proceedings of the Fourth Latin American Web
Congress, 2006.

[10] S. Ran, “A Model for Web Services Discovery
with QoS”, in Proceedings of the ACM SIGecom
Exchanges, pp.1–10, 2003

 [11] Y. Lee, “Quality Context Composition for
Management of SOA Quality”, 2008 IEEE
International Workshop on Semantic Computing and
Applications, pp. 117–122, Sept. 2008.

[12] Tao Yu, Kwei-Jy Lin, “Service Selection
Algorithms for Web Services with End-to-end QoS
Constraints”, In Proc. Of the IEEE International
Conference on E-Commerce Technology, 2004.

[13] Z. Xu, P. Martin, W. Powley and F.
Zulkernine,“Reputation-enhanced QoS-based web
services discovery,”In Proc. of the IEEE Intl. Conf.
on Web services, pp.249-256, 2007.

[14] M. Tian, A. Gramm, H. Ritter, J. Schiller, “Efficient
Selection and Monitoring of QoS-aware Web
services with the WS-QoS framework”, In
proceedings of the 2004 IEEE/WIC/ACM International
Conference on Web Intelligence, pp.152-158, Sept.
2004.

[15] D. A. DMello, V. S. Ananthanarayana and Santhi
T, “A QoS Broker Based Architecture for Dynamic
Web Service Selection”, in Proceedings of the IEEE
Second Asia International Conference on Modelling &
Simulation, pp.101-106, 2008.

[16] H. Ludwig, A. Keller, A. Dan, R. P. King, and R.
Franck, “Web Service Level Agreement Version
1.0Specification”, IBM, 28thJan, 2003.

[17] S. Ran., “A framework for discovering Web
services with desired quality of services
attributes”, In Proc. of the Int’l Conf.on Web Services,
pages 208–213. CSREA Press, 2003.

[18] Z. U. Singhera “Extended Web services
framework to meet non-functional requirements”,
In Proc. of the Symposium on Applications and
Internet, pp-334-340, 2007.

http://www.ijser.org/

